Targeting the epigenetic readers in Ewing Sarcoma inhibits the oncogenic transcription factor EWS/Fli1
نویسندگان
چکیده
Ewing Sarcoma is a rare bone and soft tissue malignancy affecting children and young adults. Chromosomal translocations in this cancer produce fusion oncogenes as characteristic molecular signatures of the disease. The most common case is the translocation t (11; 22) (q24;q12) which yields the EWS-Fli1 chimeric transcription factor. Finding a way to directly target EWS-Fli1 remains a central therapeutic approach to eradicate this aggressive cancer. Here we demonstrate that treating Ewing Sarcoma cells with JQ1(+), a BET bromodomain inhibitor, represses directly EWS-Fli1 transcription as well as its transcriptional program. Moreover, the Chromatin Immuno Precipitation experiments demonstrate for the first time that these results are a consequence of the depletion of BRD4, one of the BET bromodomains protein from the EWS-Fli1 promoter. In vitro, JQ1(+) treatment reduces the cell viability, impairs the cell clonogenic and the migratory abilities, and induces a G1-phase blockage as well as a time- and a dose-dependent apoptosis. Furthermore, in our in vivo model, we observed a tumor burden delay, an inhibition of the global vascularization and an increase of the mice overall survival. Taken together, our data indicate that inhibiting the BET bromodomains interferes with EWS-FLi1 transcription and could be a promising strategy in the Ewing tumors context.
منابع مشابه
BET bromodomain inhibitors suppress EWS-FLI1-dependent transcription and the IGF1 autocrine mechanism in Ewing sarcoma
Ewing sarcoma is driven by characteristic chromosomal translocations between the EWSR1 gene with genes encoding ETS family transcription factors (EWS-ETS), most commonly FLI1. However, direct pharmacological inhibition of transcription factors like EWS-FLI1 remains largely unsuccessful. Active gene transcription requires orchestrated actions of many epigenetic regulators, such as the bromodomai...
متن کاملDual targeting of EWS-FLI1 activity and the associated DNA damage response with trabectedin and SN38 synergistically inhibits Ewing sarcoma cell growth.
PURPOSE The goal of this study is to optimize the activity of trabectedin for Ewing sarcoma by developing a molecularly targeted combination therapy. EXPERIMENTAL DESIGN We have recently shown that trabectedin interferes with the activity of EWS-FLI1 in Ewing sarcoma cells. In this report, we build on this work to develop a trabectedin-based combination therapy with improved EWS-FLI1 suppress...
متن کاملTargeting the EWS-ETS transcriptional program by BET bromodomain inhibition in Ewing sarcoma
Ewing sarcomas (ES) are highly malignant bone or soft tissue tumors. Genetically, ES are defined by balanced chromosomal EWS/ETS translocations, which give rise to chimeric proteins (EWS-ETS) that generate an oncogenic transcriptional program associated with altered epigenetic marks throughout the genome. By use of an inhibitor (JQ1) blocking BET bromodomain binding proteins (BRDs) we strikingl...
متن کاملTherapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition via LSD1 targeting
Ewing sarcoma is an aggressive primary pediatric bone tumor, often diagnosed in adolescents and young adults. A pathognomonic reciprocal chromosomal translocation results in a fusion gene coding for a protein which derives its N-terminus from a FUS/EWS/TAF15 (FET) protein family member, commonly EWS, and C-terminus containing the DNA-binding domain of an ETS transcription factor, commonly FLI1....
متن کاملEpigenome Mapping Reveals Distinct Modes of Gene Regulation and Widespread Enhancer Reprogramming by the Oncogenic Fusion Protein EWS-FLI1
Transcription factor fusion proteins can transform cells by inducing global changes of the transcriptome, often creating a state of oncogene addiction. Here, we investigate the role of epigenetic mechanisms in this process, focusing on Ewing sarcoma cells that are dependent on the EWS-FLI1 fusion protein. We established reference epigenome maps comprising DNA methylation, seven histone marks, o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016